skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kim, Seungil"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Wodarz, Dominik (Ed.)
    Patient-derived tumor organoids (PDTOs) are novel cellular models that maintain the genetic, phenotypic and structural features of patient tumor tissue and are useful for studying tumorigenesis and drug response. When integrated with advanced 3D imaging and analysis techniques, PDTOs can be used to establish physiologically relevant high-throughput and high-content drug screening platforms that support the development of patient-specific treatment strategies. However, in order to effectively leverage high-throughput PDTO observations for clinical predictions, it is critical to establish a quantitative understanding of the basic properties and variability of organoid growth dynamics. In this work, we introduced an innovative workflow for analyzing and understanding PDTO growth dynamics, by integrating a high-throughput imaging deep learning platform with mathematical modeling, incorporating flexible growth laws and variable dormancy times. We applied the workflow to colon cancer organoids and demonstrated that organoid growth is well-described by the Gompertz model of growth. Our analysis showed significant intrapatient heterogeneity in PDTO growth dynamics, with the initial exponential growth rate of an organoid following a lognormal distribution within each dataset. The level of intrapatient heterogeneity varied between patients, as did organoid growth rates and dormancy times of single seeded cells. Our work contributes to an emerging understanding of the basic growth characteristics of PDTOs, and it highlights the heterogeneity in organoid growth both within and between patients. These results pave the way for further modeling efforts aimed at predicting treatment response dynamics and drug resistance timing. 
    more » « less